- 3. Consider two containers A and B containing identical gases at the same pressure, volume and temperature. The gas in container A is compressed to half of its original volume isothermally while the gas in container B is compressed to half of its original value adiabatically. The ratio of final pressure of gas in B to that of gas in A is

 - 1) $\left(\frac{1}{1-\gamma}\right)^2$ 2) $\left(\frac{1}{\gamma-1}\right)^2$
 - 3) $\left(\frac{1}{2}\right)^{\gamma-1}$

Sol. 4)
$$2^{\gamma-1}$$

for container A (gas is compressed to half of its original

volume) Isothermal compression

$$\Rightarrow$$
 P₁V₁ = P₂V₂

Let original volume be 2V₀ then after compression it becomes V₀

$$\Rightarrow P_0(2V_0) = P_2(V_0)$$

$$\Rightarrow$$
 P₂ = 2P₀ ...(1)

For container B (gas is compressed to half of its original

volume) Adiabatic compression

$$\Rightarrow P_1V_1^{\gamma} = P_2V_2^{\gamma}$$

Let original volume be 2V₀ then after compression it becomes V₀

$$=P_1(2V_0)^{\gamma}=P_2(V_0)^{\gamma}$$

$$\Rightarrow P_2 = \left(\frac{2V_0}{V_0}\right)^{\gamma} P_0$$

$$\Rightarrow P_2 = 2^{\gamma} P_0 \dots (2)$$

Ratio of final pressure of gas in B to that of gas in A will be obtained by (2) / (1)

$$=\frac{2^{\gamma}}{2}$$

$$= 2^{\gamma - 1}$$